这项研究由IIIT海德拉巴的Ananth Muppidi、IIT哈拉格普尔的Abhilash Nandy与Adobe研究院的Sambaran Bandyopadhyay共同完成,提出了一种名为ID-SPAM的创新方法,用于大语言模型的参数高效微调。该方法利用自注意力机制生成基于输入的软提示,使模型能够根据不同输入动态调整处理策略。实验表明,ID-SPAM在GLUE和SuperGLUE基准测试上优于现有软提示方法,并展现出出色的零样本域迁移能力。这一技术保持结构简单的同时,显著提升了模型在特定任务上的适应性。
至顶网 科技行者 2025-06-10 10:51:06