浙江大学研究团队开发的"自制动力训练"(Self-Braking Tuning,SBT)方法解决了大型语言模型在推理过程中的过度思考问题。该方法不依赖外部干预,而是培养模型自主识别冗余推理并适时终止的能力。研究者通过分析推理效率比率和过度思考标记比率,构建了两种数据策略:SBT-E(精确版)和SBT-D(动态版)。实验结果表明,经过训练的模型在多个数学基准测试上保持原有准确率的同时,将标记消耗减少了30%到60%,显著提高了推理效率。这项创新使AI系统能更像人类一样有效思考,为资源受限环境下的AI部署提供了新解决方案。
至顶网 科技行者 2025-05-28 08:11:02