《Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization》这篇论文提出了一种创新的代码效率优化框架,通过强化学习技术让大语言模型能够自我改进生成代码的计算效率。研究表明,基于强化学习的方法(GRPO)能够持续优化代码性能,而传统的监督学习方法(SFT和DPO)则很快达到效率提升瓶颈。这一发现为解决大语言模型生成代码效率低下的普遍问题提供了有效途径,同时揭示了强化学习在教导AI自我完善方面的强大潜力。
至顶网 科技行者 2025-06-04 09:14:25