这篇研究介绍了香港科技大学团队开发的难度感知提示法(DAP),一种能够根据问题难度智能调整推理链长度的创新方法。通过这一方法,研究者构建了LiteCoT数据集,包含10万个简洁推理样本,平均仅720个标记,比传统方法减少约90%。基于此数据集训练的Liter模型系列在多项基准测试中表现优异,在AIME24数学考试上达到74.2%的通过率,同时仅使用约5,000个推理标记。研究证明,精简且难度适应的推理链不仅能节省计算资源,还能提高模型性能,为构建更高效的AI推理系统提供了新思路。
至顶网 科技行者 2025-06-04 09:16:36