康奈尔大学研究团队提出了"价值引导搜索"方法,通过训练标记级价值模型来优化大型语言模型的推理过程。他们收集了250万个数学推理轨迹,训练了15亿参数的评估模型,实现了基于块的高效搜索。这种方法不需要预定义"步骤"概念,也无需昂贵的每步标注。在四个数学竞赛基准测试中,该方法使DeepSeek-1.5B模型达到了45.7%的平均准确率,与更大模型相当,同时显著减少了计算资源需求。研究团队开源了数据集、模型和代码,为高效人工智能推理提供了新范式。
至顶网 科技行者 2025-05-29 12:03:07